
Zynqberry×ZYNQ
活用セミナー

特殊電子回路株式会社

第2章 Zynqberryの使い方
2018年6月13日

(C)2017-2018 特殊電子回路株式会社 1



目次
• ハードウェア
• MIO
• CPLD
• GPIO
• リファレンスデザイン
• サンプルプロジェクト
• Trenz製Debian Linuxの所在

• Trenzスクリプトの使い方
• 最初の書き込み
• Linuxの起動
• Linux上からのROM書き換え
• SDSoCについて
• 作成したFPGAとソフトの

ROM化

(C)2017-2018 特殊電子回路株式会社 2



Zynqberryのハードウェアの特徴①
• XILINX ZYNQ XC7Z010-1CLG225C

• 割と小規模。より小規模な7S版も最近はある。
• DDR3 SDRAM 512MB

• ZYNQの最大メモリが1GBなのでMAXの半分
• LAN9514

• ZYNQのGbEを使わない。USB HUBと兼用
• HDMI出力

• 標準では720p。1080pもいけるはず。
• PWMによるオーディオ出力

(C)2017-2018 特殊電子回路株式会社 3



Zynqberryのハードウェアの特徴②
• DSIコネクタ
• CSIコネクタ

• CSIを受信するための回路が秀逸
• CSIを利用するサンプルデザインが提供されている

• マルチプレクサでI2Cを拡張
• アナログ入力(V_P、V_N)はオーディオコネクタに接続
• ボードコントロール用にCPLDを搭載
• RTCは非搭載
• ユーザが使えるLEDはない

(C)2017-2018 特殊電子回路株式会社 4



MIOの割り当て

(C)2017-2018 特殊電子回路株式会社 5

MIO 機能
0 I2C MUX INT信号の受信?
1-6 QSPI FLASH ROM S25FL127SABMFV10
7 USB RESET Lでリセット
8-9 UART1 CPLD経由でUSBへ出力
10-15 SD1
28-39 USB OTG USB3320C
48-49 I2C1 MUX TCA9544APWR
52-53 CPLD
EMIO I2C0 サンプルデザインでは未接続
EMIO GPIO 24bit幅
EMIO TTC サンプルデザインでは未接続

※電源電圧は3.3V



CPLDについて
• 詳細は不明

• LEDの点灯
• DSI(ディスプレイ)の

コントロール
• CSIのGPIO操作
• MIO8,9をおそらく

C_TDO、C_TDI経由で
USB-UARTに送っている

(C)2017-2018 特殊電子回路株式会社 6



GPIOについて

(C)2017-2018 特殊電子回路株式会社 7



GPIOのピン割り当て

(C)2017-2018 特殊電子回路株式会社 8

39

40

37

38

35

36

33

34

31

32

29

30

27

28

25

26

23

24

21

22

19

20

17

18

15

16

13

14

11

12

9

10

7

8

5

6

3

4

1

2

GPIO2

3.3V
5V5VGND

GPIO14

GPIO15

GPIO18

GND

GPIO23

GPIO24

GND

GPIO25

GPIO8

GPIO7

ID_SCL

GND

GPIO12

GPIO3

GPIO4

GND

GPIO17

GPIO27

GPIO22

3.3V

GPIO10

GPIO9

GPIO11

GND

ID_SDA

GPIO5

GPIO6

GPIO13

GPIO19

GND

GPIO16

GPIO20

GPIO21

GPIO26

GND

G11 H12G12H13H14J15 K15J13 J14

J11 H11

N14

N13L15M15 L14M14 K13L13 K11

L12

M12P15

R15R12 R13

※GPIO 14,15はEMIOからは操作できない
※GPIO2,3はプルアップされている



GPIOの端子割り当て一覧
index FPGAピン GPIO番号 ピンヘッダ
0 K15 2 3

1 J14 3 5

2 H12 4 7

3 N14 5 29

4 R15 6 31

5 L14 7 26

6 L15 8 24

7 J13 9 21

8 H14 10 19

9 J15 11 23

10 M15 12 32

11 R13 13 33

12 L13 16 36

13 G11 17 11

14 H11 18 12

(C)2017-2018 特殊電子回路株式会社 9

index FPGAピン GPIO番号 ピンヘッダ
15 R12 19 35

16 M14 20 38

17 P15 21 40

18 H13 22 15

19 J11 23 16

20 K11 24 18

21 K13 25 22

22 L12 26 37

23 G12 27 13

24 F13 DSI_D0_N

25 F14 DSI_D0_P

26 F12 DSI_D1_N

27 E13 DSI_D1_P

28 E11 DSI_C_N

29 E12 DSI_C_P

index FPGAピン GPIO番号 ピンヘッダ
30 M11 CSI_D0_N

31 M10 CSI_D0_P

32 P14 CSI_D1_N

33 P13 CSI_D2_P

34 N12 CSI_C_N

35 N11 CSI_C_P

36 N8 PWM_R

37 N7 PWM_L

GPIO 14,15はEMIOからは操作できない

FPGAのGPIO[23:0]を操作すると
ピンヘッダに出ている
GPIO端子の2~27に反映される

RasPiでの番号FPGAのバスの
インデックス



GPIOの操作方法
• GPIO汎用ドライバ(/sys/class/gpio)を使う

• Linuxのシステムコールを使い、/sys/class/gpioにある仮想ファイル
を操作します。

• シェルでの操作をC言語から行うこともできます。

• /dev/memを使う方法
• GPIOの物理アドレスに直接データを書き込む

(C)2017-2018 特殊電子回路株式会社 10



GPIOドライバの説明
• /sys/class/gpio にPSからGPIOを操作するドライバあり

• /sys/class/gpio/gpio906～gpio1023が1つ1つのbitに対応
• 906~959はMIO経由のGPIO(54本)
• 960~1023はEMIO経由のGPIO(64本)

• RasPiピン番号が 2~13の場合："ピン番号+958"番の仮想ファイル
• RasPiピン番号が16~26の場合："ピン番号+956"番の仮想ファイル

• gpio960 = FPGAのEMIO GPIO[0] = RasPiのGPIO2
• EMIO GPIO0~GPIO11 → RasPiのGPIO 2~13 → gpio960~971
• EMIO GPIO12~GPIO23 → RasPiのGPIO 16~27 → gpio972~983

(C)2017-2018 特殊電子回路株式会社 11



GPIOドライバの操作方法①

(C)2017-2018 特殊電子回路株式会社 12

root@zynqberry ~$ ls /sys/class/gpio 
export gpiochip906 unexport 

/sys/class/gpioディレクトリの中身を確認してみます

root@zynqberry ~$ echo 960 > /sys/class/gpio/export
root@zynqberry ~$ ls /sys/class/gpio/
export gpio960 gpiochip906 unexport

このexportへ使いたいGPIOの番号を書き出すと、そのGPIOを使うための仮想ファイルが用意されます。
今回はGPIO2へのアクセスなので960番を書き出します。

root@zynqberry ~$ ls /sys/class/gpio/gpio960
active_low device direction edge power subsystem uevent value

新しくできた/sys/class/gpio/gpio960の中身は

※906はMIO0



GPIOドライバの操作方法②

(C)2017-2018 特殊電子回路株式会社 13

仮想ファイルdirectionはGPIOの入出力の制御、
仮想ファイルvalueはGPIOの値(1ならHigh、0ならLow)の制御に使います。
まずGPIO 2を出力用にするため

root@zynqberry ~$ echo "out" > /sys/class/gpio/gpio960/direction
root@zynqberry ~$ cat /sys/class/gpio/gpio906/direction
out

root@zynqberry ~$ echo 1 > /sys/class/gpio/gpio960/value
root@zynqberry ~$ echo 0 > /sys/class/gpio/gpio906/value

この状態でvalueに1や0を書き出すと、GPIOに接続したLEDを点滅させることができます。



/dev/memを使う方法
• GPIOのマップされているIOアドレス0xE000A000
• 1bitごとに1つのbitが対応している

(C)2017-2018 特殊電子回路株式会社 14

オフセット レジスタ名 機能
0x00000284 DIRM_2 GPIO入出力。0で入力、1で出力
0x00000288 OEN_2 出力イネーブル
0x00000048 DATA_2 GPIOピンへの出力値

例:0xE000A284のbit0を1にするとEMIO(0)=RasPiGPIO(2)が出力になる



サンプルプロジェクト
（リファレンスデザイン）

(C)2017-2018 特殊電子回路株式会社 15



リファレンスデザイン
• 現在、4種類のリファレンスデザインが利用可能

(C)2017-2018 特殊電子回路株式会社 16

zynqberrydemo1- ZynqBerry - Demo VIDEO/AUDIO 
Design with RPI video camera stream to monitor

zynqberrydemo2 - ZynqBerry - Demo VIDEO/AUDIO 
Design with Debian_8.4 32Bit Example

zynqberrydemo3 - ZynqBerry - Demo VIDEO/AUDIO 
Design with Video and Audio Example

test_board - TE0726 Basic Linux Example

本質的に
同一

←シンプル

※Debianのイメージ入り



サンプルプロジェクト 2017.1

(C)2017-2018 特殊電子回路株式会社 17

オーディオ

ビデオ出力

ビデオ入力

AXI Liteの分配



サンプルプロジェクト 2017.4

(C)2017-2018 特殊電子回路株式会社 18

シンプルすぎるのでお勧めではない



バージョン間の相違(論理合成)
• Vivado2017.3以降では、MIOのEMIOから出る双方向ピンの

Implementができない

(C)2017-2018 特殊電子回路株式会社 19



バージョン間の相違(書き込み)
• Vivado 2017.4を使用する

• プロジェクト2017.1のスクリプトでboot.binの書き込みができない
(qspiのFSBLかどうか確認せよ、と言われる)

• プロジェクト2017.4のスクリプトでboot.binの書き込みはできる

• Vivado 2017.1または2を使用する
• プロジェクト2017.1のスクリプトでboot.binの書き込みができる
• プロジェクト2017.4のスクリプトでboot.binの書き込みはできる

(C)2017-2018 特殊電子回路株式会社 20

書き込みに使うVivadoのバージョンは、Vivado 2017.1または2が良い



書き込み失敗のエラー画面

(C)2017-2018 特殊電子回路株式会社 21



バージョン間の相違(まとめ)

サンプルプロジェク
ト
のバージョン

機能 Vivado
2017.1~2

Vivado
2017.4

Debianイメージ

2017.1
zynqberrydemo2

リッチ ◎
(HDMI,PWM Audio,
CSIカメラ,etc…)

論理合成〇
書き込み〇

論理合成×
書き込み×

あり

2017.4
test_board

シンプル ×
(何もない)

論理合成？
書き込み〇

論理合成〇
書き込み〇

なし

(C)2017-2018 特殊電子回路株式会社 22



Vivado 2017.3以降でzynqberrydemo2を使う方法

• 3ステートバッファを明示的に入れる

(C)2017-2018 特殊電子回路株式会社 23



Trenzスクリプト

(C)2017-2018 特殊電子回路株式会社 24



Trenzスクリプトの使い方
• Trenzスクリプトとは

• Vivadoのプロジェクトの生成や、ビルドや書き込みを行うためのバッ
チファイルとTCLスクリプト

• プロジェクトのフォルダの中にある_create_win_setup.cmdを実行

(C)2017-2018 特殊電子回路株式会社 25



Trenzプロジェクトの生成
• DOSプロンプトが現れるので、「1」を押して、Enterを押しま

す。

(C)2017-2018 特殊電子回路株式会社 26



各種コマンドファイルが生成される

(C)2017-2018 特殊電子回路株式会社 27



スクリプトのカスタマイズ
• design_basic_settings.cmdを右クリックし、編集

(C)2017-2018 特殊電子回路株式会社 28



最低限編集すべき箇所
• XILINXディレクトリへのパス
• Vivadoのバージョン
• ボードの型番
• zsys_bd.tcl内のバージョン情報

(C)2017-2018 特殊電子回路株式会社 29

使用するボード PARTNUMBERに設定する値
TE0720-3-1CF(A)
(Gigazee) 5

TE0720-3-2IF(A)
(Gigazee) 1

TE0726-03M
(Zynqberry) 3



block_designのバージョン
• 2017.1のプロジェクトファイルをVivado2017.1以外で使う

場合は以下の変更が必要
• block_designフォルダにzsys_bd.tclというファイルの25行目

set scripts_vivado_version 2017.1

(C)2017-2018 特殊電子回路株式会社 30



よく使うスクリプト
スクリプト名 機能
design_run_project_batchmode.cmd FPGAのビルドを行い、FSBLとU-Bootを結合し

てboot.binを生成する
design_clear_design_folders.cmd v_logとVivadoプロジェクトを削除
vivado_create_project_guimode.cmd Vivadoプロジェクトの生成
program_flash_binfile.cmd 生成されたboot.binを書き込み

(C)2017-2018 特殊電子回路株式会社 31

基本的な流れ
1. vivado_create_project_guimode.cmd ・・・ プロジェクト作成
2. design_clear_design_folders.cmd ・・・プロジェクトクリーンアップ
3. design_run_project_batchmode.cmd ・・・ ビルド
4. program_flash_binfile.cmd ・・・ 書き込み



最初の書き込み
• ZynqberryはSPI ROMからしか起動できない(SDブート不可)

• 書き込みにはTrenzスクリプトのprogram_flash_binfile.cmdを用いる
• 準備

• design_basic_settings.cmdを開く
• ＠set PARTNUMBER=3に設定する
• @set SWAPP=NAを@set SWAPP=u-bootにする

• 書き込み
• prebuilt/boot_images/m/u-boot/Boot.bin が書き込まれる

(C)2017-2018 特殊電子回路株式会社 32

SWAPPで決まる値PARTNUMBERで決まる値
2017.4プロジェクトの場合



書き込み中のようす

(C)2017-2018 特殊電子回路株式会社 33



Trenz公式Debian Linux

(C)2017-2018 特殊電子回路株式会社 34



Trenz製Debian Linuxの所在
• リファレンスデザイン2017.1版のzynqberry_demo2の

prebuildをダウンロード
• zynqberrydemo2¥prebuilt¥os¥debianにある

(C)2017-2018 特殊電子回路株式会社 35

これを解凍する



Debianのimgファイルを書き込む
• Win32DiskImagerで書き込む

(C)2017-2018 特殊電子回路株式会社 36

1.8GBある

FATのパーティションには
uimage.ubのみ



Linuxの起動1
• Trenzサンプルデザインのprebuildにあるboot.binを書き込むと、

カーネルイメージ(image.ub)が要求される

(C)2017-2018 特殊電子回路株式会社 37



Linuxの起動2
• zynqberrydemo2¥prebuilt¥os¥debianにあるdebianのイメージ

を書き込んだSDカードがあれば、起動する

(C)2017-2018 特殊電子回路株式会社 38

ユーザ名はroot
パスワードはroot



デスクトップの起動

(C)2017-2018 特殊電子回路株式会社 39

startxでデスクトップが起動



SDSoC

(C)2017-2018 特殊電子回路株式会社 40



SDSoCについて
• VivadoとHLSとXSDKを統合したものがSDx (SDSoC)
• SDxをダウンロードすると両方インストールされる
• VivadoではRTLから書くが、SDxはソフトウェアを書いて、

ハードウェア化したい部分を指定する
• 必ずBoard Platform ファイルが必要

(C)2017-2018 特殊電子回路株式会社 41



(C)2017-2018 特殊電子回路株式会社 42

Starting Synth_designとある

SDSoCの動作画面



ZynqberryとSDSoC
• ZynqberryのSDSoC対応は2016.2で止まっている

• 2016.3からSDSocとSDAccelを統合したSDxに切り替わり、Xilinx的にはSDx一本で
いく方針？のようなので2016.2からファイル構成や作法、必要ファイルなども大き
く変わっていると思われます。

(C)2017-2018 特殊電子回路株式会社 43

最後のSDSoC対応版



カスタムプラットフォームの作成

(C)2017-2018 特殊電子回路株式会社 44

• 自分でZynqberry用のプラットフォームを作成
• 一応、C関数のハードウェア化までは確認



より、リッチなプラットフォームへ
• zynqberrydemo2をベースにVivado 2018へ移行し、

プラットフォームファイルを生成中

(C)2017-2018 特殊電子回路株式会社 45



SDSoCの回路を組み込み

(C)2017-2018 特殊電子回路株式会社 46



こういうことがやりたかったんじゃないかな？

(C)2017-2018 特殊電子回路株式会社 47

root@zynqberry $ heavy_process

int main () {
・・・

hw_func1();
hw_func2();

・・・
}

HW化された関数

FPGAをアクセラレータとして使えるRaspberry Pi互換のボード
動的にHWを再構成しながら重い処理をハードでこなす



行列計算プログラムをHW化
• SDSoCのサンプルにあるarray partition
• Zynqberry(XC7Z010)には入りきらなかった

(C)2017-2018 特殊電子回路株式会社 48

より大きなFPGAが必要



他のTrenzボードで試す
• TE0808 (UltraScale+ SOM)はSDx 2017.1のサンプルあり

(C)2017-2018 特殊電子回路株式会社 49

・プロジェクトの生成がうまくいっていない？
・おそらく、plathomeの情報が足りない
・2016.3, 2016.4 , 2017.1, 2018.1で試した限りだと

微妙に構成が変わりつつあってこのPlatformの
記述や構成が互換がまったくなさそうある。



様々な書き込み方

(C)2017-2018 特殊電子回路株式会社 50



① xdevcfgを使う方法
• FPGA(PL)の動的な書き換えが可能

cat bitstream.bit > /dev/xdevcfg

• sambaとかでファイル共有しておいて、
bitstreamを転送して、xdevcfgで書き換えると非常に楽

• /etc/rc.localの中で任意のbitstremをロードさせることが可能
• PSの設定（クロックなど）が変わる場合に対応できない

(C)2017-2018 特殊電子回路株式会社 51



② Linux上からROMを書き換える方法
• LinuxがSPI ROMを認識していれば可能
• /dev/mtdblock0 デバイスをddで操作することで、

SPI ROMの内容を生で読み書きする
• 書き込み

dd if=/home/share/boot.bin of=/dev/mtdblock0
• 読み出し

dd if=/dev/mtdblock0 of=spirom.bin
hexdump -Cv spirom.bin -n 512

(C)2017-2018 特殊電子回路株式会社 52



作成したFPGAとソフトのROM化
• PLの設定が変わるような場合はROM化しなければならない
• FSBL + bitstrem + u-boot → boot.binを生成する
• 特設サイトのファイルを使うのが一番楽

(C)2017-2018 特殊電子回路株式会社 53

bifファイルに結合する
ファイルが書いてある



自分で作ったboot.binの書き込み方
• Vivado 2017.1~2とXSDK2017. 1~2を用意する
• 2017.1~2のTrenzプロジェクトを用意する
• design_basic_settings.cmdを以下のように設定する

• VIVADO_VERSION=2017.2
• PARTNUMBER=3
• SWAPP=myboot

• 生成したboot.binをprebuilt¥boot_images¥te0726_m¥myboot
に置く

• program_flash_binfile.cmdで書き込み開始

(C)2017-2018 特殊電子回路株式会社 54



boot.binとLinuxの起動の組み合わせ
• Trenz製のboot.bin

• petalinuxで作られている
• prebuildに初めから入っているもの

→ Trenz製のdebian(uImage.ub)を起動する専用
SPI ROMの扱いなどがないので、いろいろ不便

• 自主製作のboot.bin
• これから述べる手順でオープンな手順で作ったもの

→ 普通のLinuxカーネル(uImage)を起動
Ubuntu 14.10

(C)2017-2018 特殊電子回路株式会社 55



まとめ
• MIOは不用意に動かしてはならない
• GPIOを動かすには /sys/class/gpio または /dev/mem
• リファレンスデザインは2017.1および2017.4。

2017.1がリッチなデザインで、こちらを推奨
• 公式Debianは2017.1のzynqberry demo2の中にある
• スクリプトを使ってプロジェクトを生成する
• ROMの書き込みもスクリプトで行う
• SDSoCはこれから使えるようにする

(C)2017-2018 特殊電子回路株式会社 56



課題
• zynqberry_demo2のboot.binを書き込めるようにしてください
• Linuxが起動するようにしてください

（Trenz Debial Linuxでも、特電Ubuntuでも可）
• zynqberry_bootbin.zipの中のboot.binを書き込んでください
• GPIO2にLEDをつないで、チカチカさせてください

• やり方は問いません

(C)2017-2018 特殊電子回路株式会社 57


	Zynqberry×ZYNQ�活用セミナー
	目次
	Zynqberryのハードウェアの特徴①
	Zynqberryのハードウェアの特徴②
	MIOの割り当て
	CPLDについて
	GPIOについて
	GPIOのピン割り当て
	GPIOの端子割り当て一覧
	GPIOの操作方法
	GPIOドライバの説明
	GPIOドライバの操作方法①
	GPIOドライバの操作方法②
	/dev/memを使う方法
	サンプルプロジェクト�（リファレンスデザイン）
	リファレンスデザイン
	サンプルプロジェクト 2017.1
	サンプルプロジェクト 2017.4
	バージョン間の相違(論理合成)
	バージョン間の相違(書き込み)
	書き込み失敗のエラー画面
	バージョン間の相違(まとめ)
	Vivado 2017.3以降でzynqberrydemo2を使う方法
	Trenzスクリプト
	Trenzスクリプトの使い方
	Trenzプロジェクトの生成
	各種コマンドファイルが生成される
	スクリプトのカスタマイズ
	最低限編集すべき箇所
	block_designのバージョン
	よく使うスクリプト
	最初の書き込み
	書き込み中のようす
	Trenz公式Debian Linux
	Trenz製Debian Linuxの所在
	Debianのimgファイルを書き込む
	Linuxの起動1
	Linuxの起動2
	デスクトップの起動
	SDSoC
	SDSoCについて
	SDSoCの動作画面
	ZynqberryとSDSoC
	カスタムプラットフォームの作成
	より、リッチなプラットフォームへ
	SDSoCの回路を組み込み
	こういうことがやりたかったんじゃないかな？
	行列計算プログラムをHW化
	他のTrenzボードで試す
	様々な書き込み方
	① xdevcfgを使う方法
	② Linux上からROMを書き換える方法
	作成したFPGAとソフトのROM化
	自分で作ったboot.binの書き込み方
	boot.binとLinuxの起動の組み合わせ
	まとめ
	課題

